0=6t^2+64t+192

Simple and best practice solution for 0=6t^2+64t+192 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=6t^2+64t+192 equation:


Simplifying
0 = 6t2 + 64t + 192

Reorder the terms:
0 = 192 + 64t + 6t2

Solving
0 = 192 + 64t + 6t2

Solving for variable 't'.

Combine like terms: 0 + -192 = -192
-192 + -64t + -6t2 = 192 + 64t + 6t2 + -192 + -64t + -6t2

Reorder the terms:
-192 + -64t + -6t2 = 192 + -192 + 64t + -64t + 6t2 + -6t2

Combine like terms: 192 + -192 = 0
-192 + -64t + -6t2 = 0 + 64t + -64t + 6t2 + -6t2
-192 + -64t + -6t2 = 64t + -64t + 6t2 + -6t2

Combine like terms: 64t + -64t = 0
-192 + -64t + -6t2 = 0 + 6t2 + -6t2
-192 + -64t + -6t2 = 6t2 + -6t2

Combine like terms: 6t2 + -6t2 = 0
-192 + -64t + -6t2 = 0

Factor out the Greatest Common Factor (GCF), '-2'.
-2(96 + 32t + 3t2) = 0

Ignore the factor -2.

Subproblem 1

Set the factor '(96 + 32t + 3t2)' equal to zero and attempt to solve: Simplifying 96 + 32t + 3t2 = 0 Solving 96 + 32t + 3t2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 32 + 10.66666667t + t2 = 0 Move the constant term to the right: Add '-32' to each side of the equation. 32 + 10.66666667t + -32 + t2 = 0 + -32 Reorder the terms: 32 + -32 + 10.66666667t + t2 = 0 + -32 Combine like terms: 32 + -32 = 0 0 + 10.66666667t + t2 = 0 + -32 10.66666667t + t2 = 0 + -32 Combine like terms: 0 + -32 = -32 10.66666667t + t2 = -32 The t term is 10.66666667t. Take half its coefficient (5.333333335). Square it (28.44444446) and add it to both sides. Add '28.44444446' to each side of the equation. 10.66666667t + 28.44444446 + t2 = -32 + 28.44444446 Reorder the terms: 28.44444446 + 10.66666667t + t2 = -32 + 28.44444446 Combine like terms: -32 + 28.44444446 = -3.55555554 28.44444446 + 10.66666667t + t2 = -3.55555554 Factor a perfect square on the left side: (t + 5.333333335)(t + 5.333333335) = -3.55555554 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| -19-6m=-8m+13 | | x^3-x^2y+xy-y^2= | | 20+5w=6w | | 50(8)+16= | | -8z=-9z-6 | | 2t+8t-1=6t-5 | | 26-8x=2 | | -19-3+15u=20u+19 | | 12-2x(4)= | | -1-9n=-8n+6 | | 5d+10+2d=-10+9d | | 8x-(6+3x)= | | 1-8q=10-9q | | 7/8÷21/4 | | 6y=7y+3 | | 5(3.14)x=18 | | g=-g-10 | | -4(-220)= | | 2x-54=16 | | -2k-6=-k | | 12(-11-8y)= | | 0=-0.075x^2+2.509x | | 3x-79=149 | | -2(-1.5)= | | X-84=.6x+41 | | (5y-1)+(-2+4)= | | 4(x+5)-3(x+4)=-2 | | -2f-4=6+3f | | 2x-88=96 | | 3x-30=39 | | 4(-0.50)= | | 12x+29=53 |

Equations solver categories